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INFLUENCE OF HEAT AND MASS TRANSFER ON
THE DEVELOPMENT OF TWO-DIMENSIONAL
SEPARATED FLOWS

A. A. Prikhod’ko and O. B. Polevoi UDC 532.516:536.24

The effect of cooling and heating of a streamlined surface, free mass transfer, weak and strong isothermal
injection, and suction on the development of supersonic turbulent separated flows is considered. The
influence of the temperature factor and nefficiency ratio parameter on the gas-dynamic and geometric
characteristics of separated turbulent flows s estimated.

1. Introduction. The problem of heat and mass transfer cffect in turbulent separated flows is very important
in the protection on structural clements from high-temperature flows, control of flow scparation, and optimization
of acrodynamic forms. So far, integral methods and experiments have plaved a lcading role [1-6 1. In {3 ] the effect
of distributed injection on supersonic flow separation with different generators of shock waves is studied to check
experimentally the concept of “free interaction” under conditions of porous injection. The effect of streamlined
surface cooling on generation and development of supersonic turbulent separation was studied in {4, 6]. In turn,
the means of computational hvdroaerodynamics, developed at present and mutually supplementing the
experimental approach, allow onc to obtain detailed information on the structure and characteristics of viscous-
inviscid separating interactions {2, §, 7-141].

On the basis of the Beam —Worming method and a modification of improved accuracy of the Steger implicit
factored scheme, which are realized within the same program package [9, 14 ], we conducted a comparative study
of the effect of cooling and heating of a streamlined surface and weak distributed mass transfer and also strong
concentrated injection on the gas-dynamic and geometric characteristics of separated turbulent flows.

2. Problem Formulation. It is assumed that the employment of the complete nonstationary Navier—Stokes
equations is the most universal and plausible approach in numerical simulation of hydrogas-dynamic processes. To
calculate flows in the presence of flow separation and heat and mass transfer we use the notation of initial equations
in arbitrary curvilinear coordinates for dimensional variables:
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In the formulation of the boundary conditions on the inlet loop of the computation region the parameters
of the oncoming undisturbed flow were fixed. An incident shock wave was generated by assignment of the
parameters of the flow behind an oblique shock wave on the upper boundary of the computation region. On the
outlet portion of the computation region, "soft” boundary conditions in the form of the absence of longitudinal
gradients of gas-dynamic parameters were formulated. On the streamlined surface in the boundary layer the
conditions of sticking and thc heat and mass transfer parameters were assigned, and, morcover, a boundary layer
approximation on the absence of a longitudinal pressure gradient in the viscous sublayer was used here. Injection
of a concentrated sound jet (M = 1) was modeled by assignment of the jet parameters in the corresponding nodes
of the computation grid.

3. Numerical Method. To construct a numerical algorithm for solving Egs. (1), as in |7], the derivatives
for the convective terms were approximated by central differences
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On applying approximations (2) and (3) to initial system of Egs. (1), its difference analog will have the
second order of accuracy
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Most of the results given below were obtained by a difference scheme with improved accuracy. As in (8],
to construct the difference scheme we used the operators
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Applying the operators Ag and A, to (4), we arrive at the following difference scheme:
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By virtuc of (1), the expression in the braces has the order of 1/Re and in general the error of scheme (6)
is 0(AL, AT, A774, AE*/Re, Ar]z/Rc) on a nonextended model. Since, as usual, 1/Re << min(’AEz‘Ar]z), the scheme
will be lower than the foerlh order Ufl\roug}l practically the cntire flow region.

Jacobi matrices A = aE/aa, B = c’?F/Oa, which are necessary for lincarization of difference scheme (6) in
time, have the form
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where ®% = 0.5(y — 1)(u + V), 9 = kyu + kov.
In linearization of the viscou§ terms, the mixed derivatives are approximated according to an explicit
scheme; therefore, the Jacobi matrix M is written in the following form:
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Fig. 1. Flow diagrams. Dependences of the length of the cffect against the

flow and of the position of the separation point on the characteristics of heat

and mass transfer. 1) heat transfer, 8 = 137 2) same, 107 3) mass transfer,

0 = 13": 4) mass transfer [3]; 5) heat transfer {4].
The Jacobi matrix I:J is written similarly.

Lincarizing the flow vectors with respect to the previous time step and emploving approximate factorization,

we obtain a difference equation which has a block-tridiagonal structure and is solved in fractional steps by vector
sweeps:
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where A = At or A= At/2 for the first or second orders of accuracy in time.

The derivatives in the boundary conditions were approximated by corresponding explicit and implicit one-
sided difference operators.

The considered numerical algorithm is implemented, together with others, by explicit, mixed and implicit
numerical methods within the framework of a unique package of application programs for solving the Euler and
Navier—Stokes equations. All the algorithms were tested on the problem of the interaction between a shock wave
and a laminar boundary layer (9, 4]

A comparison of the above-presented algorithm and the Steger method showed [14 ] that the introduction
of additional operators Ag and 4, does not lead to an appreciable increase in computer time but allows onc to obtain
qualitative solutions on relatively rough grids involving 30—~350 nodes in one direction.

4. Discussion of the Results. We consider the cffect of four types of actions associated with distributed heat
and mass transfer on a separated flow formed as a result of interaction between an oblique shock wave and a
turbulent boundary layer on a plate with a porous section. The oncoming flow parameters are M, = 2.9, Resy =
109, 8¢ = 0.017 m, the angle of flow behind the oblique shock wave 6 = 7, 10, and 13° The length of the porous

section was equal to 2/3 of the length of the computation region. The flow scheme and the computation region are
shown in Fig. 1.
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Fig. 2. Distributions of pressure and cocfficient of friction in interaction be-
tween an oblique shock wave and a turbulent boundaryv layer. Points,
experiment [12]

The averaged Navier—Stokes cquations closed by a model of eddyv viscosity were used as initial equations
to study supersonic turbulent separated flows. In form they do not differ from Egs. (). In this case the coefficients
of viscosity and thermal conductivity are equal to the sum of the molecular and eddy viscosities.

Several models of eddy viscosity were used to close system of Egs. (1). Algebraic models of the
Cebeci—Smith [12] and Boldwin—Lomax [13] types and the Glushko—Rubezin and Jones—Launder models of the
transfer of turbulence characteristics [12] were used.

The calculations were performed on (40 x 35) and (48 x 40) node grids. Along the normal to the
streamlined surface, the nodes of the physical grid were concentrated according to a power law, so that in the
boundary layer there were from 1/2 to 2/3 of the total number of points and allowance for a laminar sublayer in
the turbulent flow was provided. Computer time expenditures for the ES-1045 computer were 10—15 h per version.
It should be noted that for the given problem only two metric coefficients £, and #, differ from zero. Since in the
considered algorithm all four metric coefficients arc present, the computer time expenditures for the numerical
experiment are equavalent to the expenditures for the calculation of the development of a supersonic turbulent
separation for an arbitrary configuration of the body.

First, flow separation on an impermeable plate with different values of the ratio of surface temperature T,
to recovery temperature T, within the range from 0.1 to 1.3 was studied {11 ]. In the sccond case, the injection
parameter, which characterized the mass transfer between oncoming and injected transverse flows A, =
(PV)inj/ (P)w, was varied within the limits of from ~0.005 to +0.005 for conditions of approximate heat insulation
of the plate. The third type of effects was characterized by injected gas cooling at a fixed value of A.. The injected
gas temperature Ty varied within the range of (0.1 - 1.O)T, at T,/ T, = | on the impermeable portions of the plate.
The last to be modeled was separated flow on a free porous surface, i.e., in the absence of pressure and temperature
gradients and free gas overflow through a porous section (3p/dy = aT/dy = dv/dy = 0).

Analysis of the results showed a substantial effect of heat and mass transfer conditions on the development
of separated supersonic turbulent flow (Figs. 1-5).

Plate cooling leads to reduction of the separation zone, convergence of the separation and reattachment
waves, and disappearance of the "plateau” in the pressure distribution. As the plate temperature rises, the boundary
layer thickness increases. Thickening of the subsonic region causesfacilitates more intense transfer of disturbances
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viscous terms; n, number of time layer; p, static pressure ip\ a flow; Pr, Prandtl number; a, vector of dependent
variables; Re, Reynolds number; ¢, time; T, temperature; T, S, vectors of viscous terms; u, v, components of velocity
vector in Cartesian coordinates; x, y, Cartesian coordinates; £, »n, curvilinear coordinates related to surface of
streamlined body; &y, &, 71, 1y, metric coefficients of the transformation of coordinates; A, coefficient of bulk
viscosity (A = —2/3u); p, density; 4, dynamic coefficient of viscosity; &, total coefficient of thermal conductivity;
y, ratio of specific heat capacities; 1, shear stresses; d, central differcnce operator; A, V, operators of right and left
differences; A&, An, steps of uniform coordinate grid toward £ and 5, respectively; dg, initial thickness of boundary
layer; 6, angle of wedge slope. Indices: j, k, numbers of nodes of computation grid towards & and 7, respectively;
o, undisturbed flow; 0, parameters of an adiabatically retarded flow; w, wall.
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